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MAXIMUM LIKELIHOOD PRINCIPLE AND MODEL SELECTION v
WHEN THE TRUE MODEL IS UNSPECIFIED*

Ryuei Nishii

Center for Multivariate Analysis
University of Pittsburgh

and

Hiroshima University

ABSTRACT Y

’A\'Suppose independent observations come from an unspecified distribu-

tion. Then we consider the maximum likelihood based on a specified para- ‘ﬁ

.Q
metric family by which we can approximate the true distribution well. We ﬂ
examine the asymptotic properties of the quasi-maximum 1ikelihood estimate g

and of the quasi-maximum likelihood. These results will be applied to y

model selection problem. - o

AMS subject classification: Primary 62A10; secondary 62F12. ?

> Key words. end-phrazesd AIC, BIC, consistency, law of iterated logarithm

MLE, regularity conditions _
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. ' 1. INTRODUCTION

R } ~ The maximum likelihood principle is the basic and useful technique

% for statistics. It has a long history and there is quite a bit of litera-

D

f; ture treating its asymptotic properties, e.g., Wald (1949) and LeCam (1953).
3 These classical results are based on the assumption that the unknown den-

sity function lies in a specified parametric family. However, if this
assumption is not true, do similar results remain valid? Cox (1961, 1962)
considered first such a problem in testing of separated families, (see also

Q Berk (1966, 1970)). Huber (1967) pointed out that this problem is connected

with robust estimation. White (1982) reviewed this problem and showed the

consistency and the asymptotic normality under the assumptions corresponding

LR N W W

to the regularity conditions in the classical theory. Additional related

references are Akaike (1973) and Foutz and Srivastava (1977).

" In Section 2 we give the consistency order of the maximum likelihood
- estimator and of the maximum 1ikelihood under the usual conditions with
o
" additional assumptions on higher order derivatives of the specified densities.
'j Further we treat the testing problem of two families. Section 3 is concerned
: with the model selection. We prove the strong consistency of BIC type cri-
o
v teria in a very general setting. The inconsistency of AIC will also be
y shown. However, we reconsider the consistency in model selection in Section
y 4, A1l proofs of the theorems will be shown in Section 5.
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2. OBSERVATIONS AND FAMILY OF DENSITIES ?

Let n observations (which may be multivariate) Xy eees Xp (e Rd) g
be independently and identically distributed as the probability density 5
function g with respect to a fixed measure v on.Rd. Suppose that }
|
i Jllog g(x)|g(x)dv(x} < =. Next consider the family of densities _ E
| M= {f(x]0)]e e @} (2.1) ‘
where @ is a convex set iniRp. Define the quasi-log-likelihood of n obser- h
vations as R
[
1" y
L,(6) = n _le(xile), 2(x|8) = 1og f(x]|e) (2.2)
‘I:
and define the quasi-maximum likelihood estimate by § = 6n. Recall the E
Kullback-Leibler information:
Hgif,e) = [9(x) Togig(x)/F(x|e)Idv > 0 (2.3) 3
.
provides some closeness from g to f(-|6). We call eg and f(-leg) the quasi- ]
true parameter and the quasi-true density in M respectively when eg minimizes E
I(g;f.0), 6 € @, or equivalently eg maximizes the expected log-likelihood E
N
e(s) = [g(x)log £(x| o) dx. (2.4) 1
| ]
Obviously if g(x) is exactly specified by M as f(x|eo), then eg = 8.
4
Now we make assumptions on (g,M) which will enable us to study the :
asymptotic behavior of maximum 1ikelihood principle. )
ASSUMPTION A1, The quasi-true parameter 8 is unique and is an interior E
point of ®. tf
:
)
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ASSUMPTION A2. (a) za(xle) = az(xle)/aea and zaB(xle) = azz(x|e)/aeaae

B
(ey8 = 1, ..., p) are measurable with respect to x e Rq for each 6 ¢ @

and continuous with respect to e for each x, where 2(x|6) = Tog f(x|s).
(b) Je(x]e)]|, l2,(x|e)], IzaB(xle)l, Izaf(xle)zsf(xle)l are dominated

by the integrable functions with respect to g(x), which do not depend on e.
"ASSUMPTION A3. V(eg) and w(eg) are positive definite where

2
) ) 3
V(e) = —2(x[8) —2(x W = - [——= .
(6) = ggl5g2(x| )%T (xfe)] and W(e) Eg[aeaeTz(xle)J

ASSUMPTION A4. There exists the quasi-maximum likelihood estimate of
én which tends to eg with probability 1.

= a3 =
ASSUMPTION A5. (a) zaBY(xle) = 3 z(xle)/aeaaeeaey, (asBsy=1,...,p)
are measurable with respect to x for each 9.
(b) |2(x|e)|2, ILQBY(xle)l and Izae(xle)|2 are dominated by integrable

functions with respect to g, which do not depend on 8.

Remark on A4. (i) case g e M: Several sufficient conditions ensuring
the assumption A4 are known, e.g., Wald (1949), Huber (1967) and 5e.2 of
Rao (1973).

(i1) case g ¢ M: White (1982) showed that A1-A3 with A4': @ is com-
pact ensure A4, Conditions by Huber, derived without assuming that g is
exactly specified, suffice A4, Also Wald's assumptions can be modified to

this situation by substituting df(x,eo) for g(x)dv and 8y for eg, which
meet A4.

If the true density is completely unknown, any of our conditions is

not checked. However, M gives a good approximation to g and M meets condi-
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tions A1-A5 when g(x) = f(xleo), then (g,M) will satisfy A1-AS5. '
The assumptions A1-A4 are corresponding to the regularity conditions :

in the classical theory. They ensure the strong consistency of én on Ln(é).

- -

Further, the asymptotic normality of én can be shown, e.g., White (1982)
and Foutz and Srivastava (1977). If we assume A5 additionally, the con-

sistency order may be evaluated as in the following theorem which will play

a key role in studying model selection criteria. .

THEOREM 1. Let n independent observations come from the distribution
with density g and (g,M) meet A1-A5 where M is defined in (2.1). The

orders relating to the quasi-maximum 1ikelihood estimates &_and the log-

n )
likelihood are: i
(i) én = eg + O((n'lloglogn)]/z) a.s., f
s Ay L -1 |
(i1) L, (8) = Ln(eg) + 0(n”'log log n) a.s.,

(i) L, (8) = eley) + o((n"" 1og1ogm)/2) a5 5

where o is defined in Al, L, (e) in (2.2) and e(s) in (2.4).

T O KB "

Note that Theorem 1 is new even if g is exactly specified by M. Under
non-regular case the consistency order of 6n may be different from
0((n'lloglogn)]/2). However, (ii) still remains valid as long as the )
consistency order of én is faster than 0((n’1log log n)]/z) because the |
order of (ii) is based on the law of iterated logarithm for z(xnle) + ...+ y
z(xnleg). .

Cox (1961, 1962) introduced the problem: Which family specifies the '
;rue density? He proposed the corrected likelihood ratio test. Our problem
is: Which family is closer to the true density? We take a simple likelihood

ratio approach. Let M; = {fi(X!91)|91 e qu} (i=1,2) be families of den-
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sities (which may not be separated), and let €5 be maximized expected log-

likelihoods in M, (see 2.4). Then test the hypothesis

HO: €g = €y  versus H]: €g > €7 (2.5)

Assume both (g,M;) satisfy A1-A5. If Hy is true, from (iii) of Theorem 1
the likelihood ratio

A, = z 0g{Fo(x;180)/f, (x518;)3 - (2.6)
i

tends to infinity since n']An S 0, a.s., which implies the likeli-

hood ratio can asymptotically find the family closer to g. To make more de-

tailed discussion, we get:

THEOREM 2. Consider the testing hypothesis (2.5) under the conditions
A1-A5. Then the likelihood ratio test is consistent.,

-1/2

Let 02 be the asymptotic variance of n A_. Then if d = |eo -ell/o

n

is large, we can discriminate the families by using small data. However,
when d is small we need a large data. Hence in such a case it would be
preferable to develop similar discussion as the correéted likelihood ratio

proposed by Cox. See also Kent (1986).
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3. MODEL SELECTION

We have shown that the 1ikelihood ratio test is ﬁsefu] when two models
are under consideration. When one has many models as the candidates for
the true density 9> model selection procedures are utilized. Consider k
models M, = {fi(xlei)lei €®;}. We treat here the criteria given by the

following forms:

16(1) = -2aL{)(3,) + cpir (=1, .00,k (3.1)

where éi, Léi)(éi) and p, are respectively the quasi-maximum likelihood esti-
mate, the quasi-maximum log-likelihood divided by n and the number of para-
meters under the model M - The model minimizing (3.1) will be regarded as
the best model. Akaike (1973) proposed to take c, = 2 (AIC), Schwarz (1978)
and Rissanen (1978) proposed c, = Yogn (BIC), and Hannan & Quinn (1979) as
cy = K log Togn(K>0). Suppose the expected log-likelihood of M] is largest
among those of k families. By Theorem 2, IC(i) (i=1,...,k) will take

1

almost surely its minimum value at IC(1) for large n if lim n~ c, = 0. Every

criterion above satisfies this condition. Hence we can find asymptotically
which model is closest to g, Further we treat the case that the closest model

My (M; say) is divided into several subfamilies (nested case).

Suppose the quasi-true parameter vector eg can be written as

*
’0"°"0)’ e?#o, e e ey ea#o

= e*,...,
eg (] eq

and suppose zero vector is an interior point of @. This assumption implies

that o ..» 0 are redundant. We call J, = {1,...,q} the quasi-true

q+1’ - P
model and Jf = {1, ..., p} the full model for simplicity. Let J be a subset

of Jf. Then submodel of M specified by J, say M(J), is defined by

{f(x|e(J))|e e @) where 6(J) = (0 Oe 0...Oej 0...0e, 0...0), J ={Jys eendg )

] 2 Je



N E

e
-
gy L PN

» J‘JJJ-’;‘

o

L A

- -,
- -

Y *afe Droe 0 el o) ‘gl . NN KN W T W I N AN E NN i T N MgV VaFiV.y Ve ®.

EXAMPLE. Let ¢(x) = (2m)" Y 2exp(-x2/2), g(x) = 1/2{s(x- 1) +$(x +1)}
and u o= {o']¢(c'](x-u))|e = (e],ez) = (02-1, u), 8y > =1, -= < u < =},
Then eg = (1,0), J, = (1}, Jf = (1,2}, M({2}) = {N(u,1)}, M({1}) = {N(O,cz)}.
Suppose (g,M(J)) meet A1-A5 and write the quasi-true parameter and
the quasi-maximum likelihood estimate by ng and éJ respectively. Hence

el ] = elo ] if I J,; and < efo ] if J ;é J,. Thus by Theorem 2;

THEOREM 3. Let A be the likeiihood ratio Ln(éd) - Ln(éd*)' Then
. - -1
if J 24J,, Ay 2 0 and Ag = 0(n 'loglogn), a.s. If J,éd*, Ap e(ng) -
e(eg) < 0.

THEOREM 4. Let jn be a subset of J. minimizing IC(J) of (3.1). If <h
satisfies both

Timnlc =0 and 1limec /log logn = +=, (3.2)
N> n N N

then Jn is a strongly consistent estimator of the quasi-true model J,, i.e.,
1im J_ = J, a.s.
e N

Note that if we relax the latter condition of (3.2) as

limnlc. =0 and limec = +oo, (3.3)
N n N

then jn is a weakly consistent estimator of J,, i.e., lim P[3n==J*] = 1.
[t el

However, we need extensive calculation for getting jn when p is large
because there are 2P-1 non-empty subsets of Jf. Our alternate procedure

saves computation. Let J_j = {1, ...,3=1,3+1,...,p} for j e Jf. Define

Jn = GedelIc_ ) > 16,

Then by the similar 1ines of the proof of Theorem 4, we get:




gk e e o

THEOREM 5. If c_ satisfies (3.2) or (3.3), then Sn is also a strongly

or weakly consistent estimator of J*.

AIC is not consistent because ¢ = 2 does not meet (3.2) nor (3.3).
It will overestimate the quasi-true model. The probability

1im P[anAIC = J] > 0, for J oJ, will be expressed using positive linear

combinations of independent chi-square variates, however, its formula is

hard to evaluate in a simple form.
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4, DISCUSSION

Our results are based on the i.i.d. assumption. However, the Theorems
1-5 still remain valid even if n observations have weak dependency which
ensures the central limit theorem and the law of iterated logarithm. Hence
our results are quite general.

Next we try to reconsider the consistency in model selection problem.
From the point of view that the model is an approximation with finite pa-
ramaters to the true density with infinite parameters (see Shibata (1980)),
" the quasi-true model under M becomes the full model in many cases. Then AIC
also becomes consistent since it does not underestimate the quasi-true model,

OQur observations do not provide the difference of AIC and BIC in this case.
Unfortunately our observations provide no difference of AIC and BIC in this

case.

The purpose of the model selection may be to find the model by which
we can get some good prediction for future observation, not the model which
provides a good fitting for given observations. Recall AIC is proposed as
an estimator of the predictive density. The consistency is one criterion
for classifying the model selection procedures, and this criterion may not

always lead a suitable conclusion in practical situation.
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5. APPENDIX

Proof of Theorem 1. From Al and A4, 6n exists and is an interior point

of @ for large n. Employing Taylor's expansion we get

0 = aL (8)/3e = aLn(eg)/ae - wn(eg)(en-eg) tr, (5.1)
where
_ .2 T. - T
wn(e) = -3 Ln(e)/aeae PPxp, T (r]n, """pn) .
- (5 Tr2(-2 L (5 T1(s. -
in = (en-eg) (s (ae1 Ln(8))/a038 I(e, eg),
8 = eg + e(an- eg), 0<e <1,
By the law of iterated logarithm and A3, A5, we have
Ln(eg)/ae = 0((n']]oglogr0]/2), a.s.
wn(eg) = w(eg) + 0((n'1loglogn)1/2), a.s. (5.2)

because EaLn(eg)/ae aEgz(XIeg)/ae = 0. From (5.2) and A3, wn(eg) is

positive definite when n is large. Solving (5.1),
)

_ -1
n" %" wn(eg) {aLn(e)/ae+rn}.

By A5 there exist H: an integrable function with respect to g and K > 0

such that for any a, 8, vy = 1, ceey P
3, = R
|9 Ln(e)/aeaaeeaey| <n iZ]H(xi) < K,

which implies rn = 0(1)(9n- 99), a.s. Thus

6, - 6g = 0((n']ioglogn)]/2), a.s.

Again by the law of iterated logarithm we know
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t‘l‘. '.Mm‘ﬁm( ) "x‘. NS AR "r ." ." e $" .‘ N 'l. .' ‘~ 5 oY



P X X34

o~ R W \ RO AL
. APUAN Al Un e l.o‘\ oAl '-.l'. LAY - WM X ‘.“l .“'!‘l‘. X ) ,‘... SRTRORL AT LR IRLE,Y ()

12

L (e ) = u_+ 0((n” ]loglogn)]/z), a.s.

g

where ug = e(eg) is defined in (2.4). From (i) and A2,

L,(e) - Ln(ég) (éﬁ-eg)TaLn(eg)/ae + 1/2(§n-e )Ta2L (e)/aeae (e - 8 )

O(n']loglog n), a.s.

Ay R _ -1 1/2
Hence, Ln(e) = Ln(eg) + Ln(e) - Ln(eg) = 0((n" "loglogn)'’“), a.s.

Proof of Theorem 2. The asymptotic normality of the likelihood ratio
A, of (2.6) is known by Foutz and Srivastava (1977) as

-1/z,

n n

—L* N[EO - 51 'y 02]
2 2 ,
where o = Eg[log{fo(xleog)/f](XIe]g)}] and eig (i = 0,1) are the quasi-true

parameters. Using a consistent estimator of o2 as

52 = 071 T Clogtf (x, |8,)/F+(x [3,)112
“n LIRS L LA R LA EEERE

we make the rejection region of H0 by

Rn = {An > /ﬁonsa}

where £, is the upper 100a-percent point of the standard normal distribution.

Under H], or equivalently u= ¢, -

0- >0,

PRI 14,1 = PIn"V/2(a ~mia) > 66 -nV/2lH] > 1, (nore)

because n']/z(xn-nu) L, N[O.oz] and Gngn - n”zu + - in p.
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Proof of Theorem 4. If J 7,:-_"J*, then

IC(J) - 1C(J,) = (#3 - a)c,, - 2n{L, (8;) - L (§,))
= log log n[ (#J - q)cn/]og Togn - 2n(Tog log n)']{Ln(éJ) - Ln(éd*)}]
+ +», a.s. (Theorem 2),
since #J - q > 0 and m cn/log logn = +o, This implies for large n,
IC(9) > 1C(J,), a.s. Hence, J < J,.
If J ){ Jys
IC(J) - 1Cc(9,) = Zn[Ln(eJ*) -Ln(eJ) - (#J-q)cn/(Zn)] > 4o, a.s.

1

since Ln(eJ*) - Ln(eJ) >c>0and limn ‘c

= 0. Hence, jn =2 J, for large n.
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